Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrochemical analysis of a PPV derivative thin film doped with β-ketoimine calix[4]arene in the dark and under illumination for the detection of Hg2+ ions

Identifieur interne : 000D88 ( Main/Repository ); précédent : 000D87; suivant : 000D89

Electrochemical analysis of a PPV derivative thin film doped with β-ketoimine calix[4]arene in the dark and under illumination for the detection of Hg2+ ions

Auteurs : RBID : Pascal:13-0166344

Descripteurs français

English descriptors

Abstract

Conducting polymer can be used as the polymer matrix of the ion sensitive membrane (containing electroactive sites), which would exhibit intrinsic mixed ionic and electronic conductivity. In this work, a soluble poly(p-phenylene vinylene) derivative (MEH-PPV) has been used as the electroconducting polymer to immobilize the β-ketoimine calix[4]arene derivative. Indium-thin oxide (ITO) electrode coated with the thin films of MEH-PPV and composite MEH-PPV/β-ketoimine Cal[4] are designed for the determination of trace amounts of Hg2+ ions. Surface morphology properties were examined by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The presented results show that the incorporation of calixarene derivative into MEH-PPV polymer improved the surface smoothness. Contact angle measurements were used to study hydrophobicity and surface energy properties of thin films. We observed that the best adhesion on the ITO surface is for the MEH-PPV/β-ketoimine Cal[4] surface due to the presence of (OH) groups coming from the molecules of derivative calix[4]arene.Thin films were characterized by electrochemical impedance spectroscopy (EIS) in the dark and under illumination. The impedance behavior of the modified electrodes is modeled by an equivalent electrical circuit using the Z-View software. From the impedance plots, the bulk resistance and ionic conductivity of the membranes is an important factor determining the ability of ions to pass across the membrane. Marked differences in the ionic conductivity are observed as a function of the light excitation. The charge transfer processes at the electrode/electrolyte interface was carefully examined in the dark and under illumination. Optical excitation of both membranes revealed that the sensing activity of the MEH-PPV/β-ketoimine Cal[4] modified electrode can improve the measuring sensitivity of Hg2+ ions compared to the MEH-PPV modified electrode.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0166344

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electrochemical analysis of a PPV derivative thin film doped with β-ketoimine calix[4]arene in the dark and under illumination for the detection of Hg
<sup>2+</sup>
ions</title>
<author>
<name sortKey="Rouis, A" uniqKey="Rouis A">A. Rouis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l'environnement</s1>
<s2>5000 Monastir</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>5000 Monastir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Echabaane, M" uniqKey="Echabaane M">M. Echabaane</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l'environnement</s1>
<s2>5000 Monastir</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>5000 Monastir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sakly, N" uniqKey="Sakly N">N. Sakly</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l'environnement</s1>
<s2>5000 Monastir</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>5000 Monastir</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dumazet Bonnamour, I" uniqKey="Dumazet Bonnamour I">I. Dumazet-Bonnamour</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Ingénierie des Matériaux Polymères: LMPB, Université Claude Bernard - Lyon 1</s1>
<s2>Villeurbanne</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="région" nuts="2">Rhône-Alpes</region>
<settlement type="city">Villeurbanne</settlement>
<settlement type="city" wicri:auto="agglo">Lyon</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ouada, H Ben" uniqKey="Ouada H">H. Ben Ouada</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l'environnement</s1>
<s2>5000 Monastir</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Tunisie</country>
<wicri:noRegion>5000 Monastir</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0166344</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0166344 INIST</idno>
<idno type="RBID">Pascal:13-0166344</idno>
<idno type="wicri:Area/Main/Corpus">000E61</idno>
<idno type="wicri:Area/Main/Repository">000D88</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0379-6779</idno>
<title level="j" type="abbreviated">Synth. met.</title>
<title level="j" type="main">Synthetic metals</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bode diagram</term>
<term>Calixarene</term>
<term>Conjugated polymer</term>
<term>Doped polymer</term>
<term>Electrical conductivity</term>
<term>Electrochemical coating</term>
<term>Electrochemical detector</term>
<term>Electrochemical impedance spectroscopy</term>
<term>Equivalent circuit</term>
<term>Experimental study</term>
<term>ITO layers</term>
<term>Manufacturing</term>
<term>Medium effect</term>
<term>Mercury II</term>
<term>Metal ion</term>
<term>Morphology</term>
<term>Nyquist diagram</term>
<term>Phenylenevinylene derivative polymer</term>
<term>Radiation effect</term>
<term>Sensitivity</term>
<term>Surface energy</term>
<term>Thin film</term>
<term>Wettability</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Phénylènevinylène dérivé polymère</term>
<term>Polymère dopé</term>
<term>Calixarène</term>
<term>Polymère conjugué</term>
<term>Couche mince</term>
<term>Couche ITO</term>
<term>Détecteur électrochimique</term>
<term>Fabrication</term>
<term>Dépôt électrochimique</term>
<term>Morphologie</term>
<term>Mouillabilité</term>
<term>Energie surface</term>
<term>Schéma équivalent</term>
<term>Spectroscopie impédance électrochimique</term>
<term>Diagramme Nyquist</term>
<term>Diagramme Bode</term>
<term>Effet rayonnement</term>
<term>Conductivité électrique</term>
<term>Effet milieu</term>
<term>Ion métallique</term>
<term>Mercure II</term>
<term>Sensibilité</term>
<term>Etude expérimentale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Conducting polymer can be used as the polymer matrix of the ion sensitive membrane (containing electroactive sites), which would exhibit intrinsic mixed ionic and electronic conductivity. In this work, a soluble poly(p-phenylene vinylene) derivative (MEH-PPV) has been used as the electroconducting polymer to immobilize the β-ketoimine calix[4]arene derivative. Indium-thin oxide (ITO) electrode coated with the thin films of MEH-PPV and composite MEH-PPV/β-ketoimine Cal[4] are designed for the determination of trace amounts of Hg
<sup>2+</sup>
ions. Surface morphology properties were examined by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The presented results show that the incorporation of calixarene derivative into MEH-PPV polymer improved the surface smoothness. Contact angle measurements were used to study hydrophobicity and surface energy properties of thin films. We observed that the best adhesion on the ITO surface is for the MEH-PPV/β-ketoimine Cal[4] surface due to the presence of (OH) groups coming from the molecules of derivative calix[4]arene.Thin films were characterized by electrochemical impedance spectroscopy (EIS) in the dark and under illumination. The impedance behavior of the modified electrodes is modeled by an equivalent electrical circuit using the Z-View software. From the impedance plots, the bulk resistance and ionic conductivity of the membranes is an important factor determining the ability of ions to pass across the membrane. Marked differences in the ionic conductivity are observed as a function of the light excitation. The charge transfer processes at the electrode/electrolyte interface was carefully examined in the dark and under illumination. Optical excitation of both membranes revealed that the sensing activity of the MEH-PPV/β-ketoimine Cal[4] modified electrode can improve the measuring sensitivity of Hg
<sup>2+</sup>
ions compared to the MEH-PPV modified electrode.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0379-6779</s0>
</fA01>
<fA02 i1="01">
<s0>SYMEDZ</s0>
</fA02>
<fA03 i2="1">
<s0>Synth. met.</s0>
</fA03>
<fA05>
<s2>164</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electrochemical analysis of a PPV derivative thin film doped with β-ketoimine calix[4]arene in the dark and under illumination for the detection of Hg
<sup>2+</sup>
ions</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ROUIS (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ECHABAANE (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SAKLY (N.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>DUMAZET-BONNAMOUR (I.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>OUADA (H. Ben)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire des Interfaces et Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Avenue de l'environnement</s1>
<s2>5000 Monastir</s2>
<s3>TUN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Ingénierie des Matériaux Polymères: LMPB, Université Claude Bernard - Lyon 1</s1>
<s2>Villeurbanne</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>78-87</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18315</s2>
<s5>354000503723670160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>39 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0166344</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Synthetic metals</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Conducting polymer can be used as the polymer matrix of the ion sensitive membrane (containing electroactive sites), which would exhibit intrinsic mixed ionic and electronic conductivity. In this work, a soluble poly(p-phenylene vinylene) derivative (MEH-PPV) has been used as the electroconducting polymer to immobilize the β-ketoimine calix[4]arene derivative. Indium-thin oxide (ITO) electrode coated with the thin films of MEH-PPV and composite MEH-PPV/β-ketoimine Cal[4] are designed for the determination of trace amounts of Hg
<sup>2+</sup>
ions. Surface morphology properties were examined by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The presented results show that the incorporation of calixarene derivative into MEH-PPV polymer improved the surface smoothness. Contact angle measurements were used to study hydrophobicity and surface energy properties of thin films. We observed that the best adhesion on the ITO surface is for the MEH-PPV/β-ketoimine Cal[4] surface due to the presence of (OH) groups coming from the molecules of derivative calix[4]arene.Thin films were characterized by electrochemical impedance spectroscopy (EIS) in the dark and under illumination. The impedance behavior of the modified electrodes is modeled by an equivalent electrical circuit using the Z-View software. From the impedance plots, the bulk resistance and ionic conductivity of the membranes is an important factor determining the ability of ions to pass across the membrane. Marked differences in the ionic conductivity are observed as a function of the light excitation. The charge transfer processes at the electrode/electrolyte interface was carefully examined in the dark and under illumination. Optical excitation of both membranes revealed that the sensing activity of the MEH-PPV/β-ketoimine Cal[4] modified electrode can improve the measuring sensitivity of Hg
<sup>2+</sup>
ions compared to the MEH-PPV modified electrode.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D09D04D</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C04E</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Phénylènevinylène dérivé polymère</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Phenylenevinylene derivative polymer</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Fenilenovinileno derivado polimero</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Polymère dopé</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Doped polymer</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Polímero dopado</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Calixarène</s0>
<s1>SEC</s1>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Calixarene</s0>
<s1>SEC</s1>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Calixareno</s0>
<s1>SEC</s1>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Polymère conjugué</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Conjugated polymer</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Polímero conjugado</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Couche ITO</s0>
<s1>SUB</s1>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>ITO layers</s0>
<s1>SUB</s1>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Détecteur électrochimique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Electrochemical detector</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Detector electroquímico</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Fabrication</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Manufacturing</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Fabricación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Dépôt électrochimique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Electrochemical coating</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Morphologie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Morphology</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Morfología</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Mouillabilité</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Wettability</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Remojabilidad</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Energie surface</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Surface energy</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Energía superficie</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Schéma équivalent</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Equivalent circuit</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Esquema equivalente</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Spectroscopie impédance électrochimique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Electrochemical impedance spectroscopy</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Espectrometría impedancia electroquímica</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Diagramme Nyquist</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Nyquist diagram</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Diagrama Nyquist</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Diagramme Bode</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Bode diagram</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Diagrama Bode</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Effet rayonnement</s0>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Radiation effect</s0>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Efecto radiación</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Conductivité électrique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Electrical conductivity</s0>
<s5>21</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Conductividad eléctrica</s0>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Effet milieu</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Medium effect</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Efecto medio</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Ion métallique</s0>
<s1>ANA</s1>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Metal ion</s0>
<s1>ANA</s1>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Ión metálico</s0>
<s1>ANA</s1>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Mercure II</s0>
<s1>ANA</s1>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Mercury II</s0>
<s1>ANA</s1>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Mercurio II</s0>
<s1>ANA</s1>
<s2>NC</s2>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Sensibilité</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Sensitivity</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Sensibilidad</s0>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>27</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Propriété surface</s0>
<s5>13</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Surface properties</s0>
<s5>13</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Propiedad superficie</s0>
<s5>13</s5>
</fC07>
<fN21>
<s1>147</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D88 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000D88 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0166344
   |texte=   Electrochemical analysis of a PPV derivative thin film doped with β-ketoimine calix[4]arene in the dark and under illumination for the detection of Hg2+ ions
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024